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Abstract— Research in human teamwork shows that a key
element of fluid and fluent interactions is the interpretation of
implicit verbal and non-verbal cues in context. This poses an
issue to robotic platforms, however, as they have historically
worked best when controlled through explicit commands that
have employed structured, unequivocal representations of the
external world and their human partners. In this work, we
present a framework for effectively grounding situated and
naturalistic speech to action selection during human-robot col-
laborative activities. This is accomplished by maintaining and
incrementally updating separate “speech” and “context” models
that jointly classify a collaborator’s utterance. We evaluate the
efficacy of the system on a collaborative construction task with
an autonomous robot and human participants. We first demon-
strate that our system is capable of acquiring and deploying
new task representations from limited and naturalistic data
sets, and without any prior domain knowledge of language or
the task itself. Finally, we show that our system is capable of
significantly improving performance on an unfamiliar task after
a one-shot exposure.

I. INTRODUCTION

The field of Human–Robot Collaboration (HRC) is tasked
with designing proactive and autonomous robot collabora-
tors able to complement the superior capabilities of human
workers to maximize throughput, improve safety of the work-
place, and reduce cognitive load on humans. The general
application domain for HRC is composed of a robot that
collaborates with humans on a joint task such as furniture
assembly [1], [2], assembly lines [3], or other factory-related
applications [4], [5]. However, state of the art technologies
still rely on sterile and rigid interactions that resort to
turn-taking behaviors [3], tele-operation, or more generally
limited autonomy and decision making capabilities [6].

Conversely, human–human interaction (HHI) during team-
work does not show this friction. Fluent and natural HHIs
are multimodal [7], highly contextual and situated [8]. This
is particularly true when coordination during teamwork is at-
tended through natural language. Humans resolve the natural
ambiguities of speech by integrating verbal with non-verbal
cues and, importantly, by grounding speech to the physical
domain of the interaction—e.g. through implicature [9] or
lexical entrainment [10], [11].

Yet, despite evidence of the importance of situated natural
language in HHI, achieving the same level of richness still
represents a significant challenge for HRI in general and
HRC in particular. Reasons for this are specific to HRC,
e.g. the presence of noise in environments such as those
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Fig. 1. Depiction of the human-robot interaction. After the human
participant requests an object to the robot via natural language, the proposed
systems integrates speech and contextual information to autonomously select
the optimal part.

commonly found in factories. Noisy environments may result
in failure to recognize significant portions of an utterance—if
not the totality of it. This not only leads to erroneous naming
of specific actions and objects, but also makes the structure of
sentences harder to parse by natural language understanding
(NLU) algorithms that exploit syntax. Most notably, impedi-
ments to deploying effective HRC interactions are also to
be found in the very nature of the communication itself.
Communication during collaboration often occurs in a time-
constrained context, is highly goal-oriented, typically re-
quires a high success rate in order to be effective, is domain-
dependent, and often features mutual adaptation between
peers. The time constraint during collaboration pressures
agents to make shorter utterances that might not be well-
formed sentences; the noise and the need for unambiguity
favor some classes of words over others, often resulting in
a highly domain-specific language. All these factors greatly
hamper the deployment of standard NLU techniques to HRC.
State-of-the-art technologies resort extensively to hand-coded
domain knowledge, or require training on large datasets—
most of which are taken from descriptive text and are



borrowed from different contexts that do not necessarily
leverage the specific domain knowledge. Still, to achieve
the level of fluency seen in HHIs, a core ability of future
generations of robots will be for them to collaborate with
humans through the situated interactions with which humans
are most comfortable [12].

Robots, in order to become proficient collaborators, should
be able to exploit context in order to ground ambiguous and
referential speech. It is worth noting that this is however
more complex than straightforwardly deploying NLU algo-
rithms to HRC scenarios. Effective collaboration requires fast
adaptation to different tasks and/or user preferences, a feature
for which systems trained on corpora composed of billions
of sentences do not allow. Further, a different kind of context
awareness is needed. Conversely, an HRC scenario constrains
the verbal interaction to a very specific physical environment,
and this affords the unique opportunity to latch a narrower
context to the bigger NLP problem, which becomes then
more tractable.

In this work, we implement a situated HRC system that
integrates verbal instructions from a human partner with
contextual information in the form of a task model. The pro-
posed system learns task representations from demonstration,
without requiring hand-coded domain linguistic or a priori
task knowledge, on a task that is designed to trigger am-
biguous, referential speech due to the use of parts and tools
that are challenging to refer to verbally. Our experiments
demonstrate that the system dynamically leverages linguistic
and contextual information to provide support to the human
worker; furthermore, it is capable of accomplishing this given
a minimal set of noisy and naturalistic data. Additionally, the
system is capable of learning online effective representations
of tasks from one shot exposures, over real collaborative
interactions.

In the following Sections, we provide an overview of
related work and how our approach is positioned with respect
to research in NLP and HRI (Section II). We then proceed
to describe the experimental setup (Section III-A, see also
Fig. 1), the proposed algorithm (Section III-B), and to
detail the collection of training data (Section III-C). Results
are presented in Section IV, followed by a discussion in
Section V, and conclusions and future work in Section VI.

II. BACKGROUND AND RELATED WORK

Although communication is pervasive in collaborative
activities, most HRC systems are not yet capable of handling
the variability of natural communication. On the other hand,
the large research in NLP and NLU mostly focuses on
corpora of written language, that, by nature, differ from the
short-term, context bounded, goal-oriented typical utterances
that arise during collaborative activities. Indeed, collaborative
scenarios typically include resource constraints that change
the nature of the communication strategies by, for example,
favoring explicit or implicit references (e.g. time pressure,
[8]). Overall, communication serves various roles during
collaborative activities, such as sharing and aligning mental
states [13], providing confirmation [14], assigning roles

and allocating subtasks [15], [2], or asking for help [16].
However, due to the limitations of current technology, it
is often necessary to develop strategies for the robot to
handle misunderstanding: a robot may for example provide
feedback on instructions that triggers users to adapt their
speech and gestures [11], or rely on more elaborate dialog
templates [17].

Most research on natural language processing relies on
pre-coded domain knowledge, or requires large datasets; in
addition, it typically focuses on specific tasks like classi-
fication or translation, that are studied in isolation from
real-world interactions with humans [18]. In robotics and
human–computer interaction, instead, the interaction with
users is paramount and data collection is expensive; for
this reason, past works have augmented the amount of
information available to such systems by integrating lan-
guage with context. One example is seen in multimodal
fusion approaches, that demonstrate how visual and acoustic
information improve the understanding of commands from
a human [19]. Compositional instructions also constitute a
powerful knowledge representation to ground natural lan-
guage commands: for example, Wang and colleagues demon-
strate how an autonomous agent can learn to ground an
unknown language in a simulated block assembly tasks from
demonstrations [20]. Of great interest to this work is the
field of pragmatic modeling, which introduces a model of
the speaker’s intentions to improve interpretation of goal-
oriented utterances [5], [16], [20]. In this work, we explore
a similar problem to these but in the context of a realistic
HRC, where the language component is acquired from the
human peer and not from typed text or generated by the
robot.

More recently, a increasing body of work has focused
on the application of NLP approaches to HRC specifically.
For instance, Cantrell and colleagues demonstrate how a
robot can rely on dialog systems to acquire knowledge about
new actions from a human [21]. In addition, several studies
targeted specific linguistic contents that are typical of collab-
orative environments. In such scenarios, humans often trigger
references to spatial relationships and several methods have
been developed to ground language on such constructs [22],
[23], [24], [25], [26]. Planning constraints also arise naturally
as a way to provide instructions to collaborative robots [27],
[28], as well as reward functions [29]. In this work, we
present a framework for the robot to learn from demon-
strations how to respond to natural language commands.
Our system takes advantage of contextual information, but
importantly it does not assume previous knowledge on the
language, the task, or the grammatical forms used.

III. MATERIAL AND METHODS

A. Experimental Setup

This paper introduces an experiment designed around a
human participant and a Baxter collaborative robot engaged
in a construction task—more specifically a small-scale chair,
developed in prior work [30] and shown in Fig. 1. The chair,
depicted in Fig. 2, requires nineteen individual parts to be



Fig. 2. The application domain the human and the robot are tasked with
is the joint construction of a small-scale chair, depicted in figure.

Fig. 3. Detail of the experimental setup. Color patterns can be used to
refer to objects and tools, but not unequivocally. For example, the two white
pieces in the foreground differ only in the position of their red stripes.
Similarly, using purely spatial relationships to refer to objects is difficult
due to the large number of objects present.

built: seven dowels that act as legs and supports for the back,
a chair seat, a chair back and ten connecting joints that fasten
parts together. A single screwdriver is the only tool needed
to secure a total of twelve screws.

For the purposes of this work, we confine the interaction
to a master–slave configuration, where the robot is expected
to provide support to the human upon request—similarly
to [31], [4]. More specifically, the parts constituting the
model set are placed in two pools of objects (at the right
and left side of the robot, see Fig. 1) that can be accessed
by the robot exclusively. To successfully perform the task, the
participant is requested to ask for constituent parts and tools
through speech commands. To facilitate the speech recogni-
tion system, we enrolled native English speakers exclusively.
Crucially, participants were free to verbally interact with
the robot in any way they preferred, in order to train the
system with as natural interactions as possible. Additionally,
a number of ‘dummy’ objects were integrated into the object
pool to add visual noise and increase ambiguity. To this
end, another important design decision was to artificially

increase the visual complexity of tools and pieces required
for the assembly task (Fig. 3). All of the pieces were 3-
D printed, novel designs, and lacked clear or otherwise
recognizable labels. These pieces were painted with distinct,
but overlapping patterns to add more visual noise. Creating
a sufficiently ambiguous task was a crucial feature of this
experiment, as a way to reproduce realistic environments in
which a simple speech model is not sufficient for the robot
needs (see Section III-B).

The Baxter robot is provided with a set of basic capabil-
ities, encapsulated into a library of high-level actions origi-
nally developed in [2]1. The perception system is provided by
ARuco [32], a library for generation and detection of fiducial
markers. Each object in the workspace is provided with
an unique marker, which is detected by the end effectors’
cameras and then mapped into the robot’s 3D operational
space via the robot kinematics. In this work, the robot is
simply tasked with picking up objects and tools and passing
them to its human partner. Additionally, we employ the
following software layers: i) a web interface to remotely
receive feedback from and tele-operate the robot during
collection of the training dataset; ii) a speech-to-text (STT)
software that employs the state-of-the-art Google Cloud STT
API [33] to convert verbal commands into text strings; iii) a
feedback channel visualized on the robot display to provide
feedback to the participant about the robot’s internal state
(see Fig. 1).

B. Data And Learning Algorithm

We propose a flexible approach for incrementally deriving
a model of the desired robot’s behavior from utterances and
context. This is accomplished by maintaining and updating
distinct models of the speech and the context in relation with
robot actions, the outputs of which are combined for action
selection. For a given utterance and the associated context,
each model yields a probability distribution over actions.
Our system assumes the independence of the utterance and
context observations, given the desired action. For a uniform
prior on robot actions, this results in the predicted probability
of actions being proportional to the product of the predictions
of the speech and utterance models. More formally, for an
observed context ct ∈ C and an utterance ut ∈ U , the action
ât chosen by the system at time-step t is the action that
maximizes:

ât = argmax
a∈At

[
pspeech(a|ut) · pcontext(a|ct)

]
, (1)

where At is the set of feasible actions at time t, which
typically excludes objects that are absent from the picking
area at a given time.

Here context refers to both the presence of objects in
the workspace but also the action history of the robot—
the sequence of successful actions taken up until the current
moment. For the purpose of this experiment we introduce
a simple context model that records counts of actions taken

1https://github.com/ScazLab/human robot collaboration
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in any context. We consider contexts represented as action
histories: C = ∪m∈NAm where Am is the set of all
sequences of m actions. Although the state of all possible
contexts is intractable, the system only models here the
distribution on actions from observed contexts and assumes
a uniform probability on unknown contexts. Because con-
texts are sequences of successful actions—each sub-sequence
prefixing an observed context is itself an observed context—
we implement the model by storing the counts of successful
occurrences of actions in the tree of observed contexts. For
a given, known, context c and Na,c the count of occurrences
of action a in context c, the model returns a probability:

pcontext(a|c) = (1− εcontext)
Na,c∑

a′∈ANa′,c
+ εcontext , (2)

where εcontext is an exploration parameter (0.15 in the exper-
iment) that accounts for new unexpected actions in known
contexts.

For the purposes of this experiment, we use a speech
model based on logistic regression to represent Pr(a|ut).
More precisely, each utterance command ut is converted by
the speech-to-text system and then represented as a bag of
n-grams of size one and two. The model for this experiment
is based on [34] for both the classifier and the feature
extraction. For a given utterance u, represented as a vector x
of n-grams counts, the logistic regression model includes a
parameter vector θa for each action and returns an estimate
of the action probability:

plogistic(a|u) =
C

1 + e−θ
T
a x

, (3)

where C is a normalization constant. We then compute:

pspeech(a|u) = (1− εcontext) · plogistic(a|u) + εcontext , (4)

in which εcontext accounts for the occurrence of irrelevant
speech commands (in practice 0.15 in the experiment).

C. Data Collection Phase

We collected data from recordings of human interactions
with a teleoperated robot. All training data was recorded
from the chair building task, that each participant built three
times, according to three different orderings (denoted as
instructions A, B, and C in Table I), that were provided
through instruction sheets. Each instruction sheet simply
includes a list of steps that the participant had to follow.
Each step is represented by a picture of the part to ask the
robot for and a picture of the current state of the chair being
built. We rotated the order in which each participant was
asked to build the chair, alternating between ABC, BCA,
and CAB.

After receiving the instructions for the task, each par-
ticipant was familiarized to the process of receiving parts
from the robot, which includes pressing a button to trigger
release of the part. During the explanation, the experimenters
avoided the use of any other word than “part” to refer to the

TABLE I
INSTRUCTION SETS USED DURING DATA COLLECTION AND

EXPERIMENTAL TRIALS.

A / A’ B / B’ C / C’

foot 1 foot 1 foot 1
leg 1 foot 2 leg 3

screwdriver foot 3 screwdriver
foot 2 foot 4 back 1
leg 2 leg 1 leg 5

foot 3 screwdriver top 2
leg 3 leg 2 foot 2

foot 4 leg 3 leg 4
leg 4 leg 4 back 2

front 1 front 1 leg 6
front 3 front 3 top 1
back 1 back 1 leg 7
back 2 back 2 back 2

seat / leg 5 seat / leg 5 foot 3 / seat
leg 5 / leg 6 leg 5 / leg 6 leg 1 / foot 4
leg 6 / top 1 leg 6 / top 1 front 1 / leg 1
top 2 / top 2 top 2 / top 2 foot 4 / front 3
top 1 / leg 7 top 1 / leg 7 leg 2 / foot 3
leg 7 / back leg 7 / back front 3 / leg 2
back / seat back / seat seat / front 1

various elements of the assembly, in order not to bias the
vocabulary later used by the participants. The instructions
specified that participants needed to refer unambiguously to
the part they wanted from the robot.

During each of the three assemblies, an experimenter was
waiting for the participant to formulate an unambiguous
request and was then triggering the actions from the robot.
However, the participants were led to believe that the robot
was operating autonomously in order to elicit the most
naturalistic utterances possible. All transcribed utterances
(and corresponding robot actions) were collected and used
later on to train the system. Importantly, all the sentences
were collected, without filtering out bad utterances and/or
broken requests. In total, 626 pairs of requested objects and
actions were collected from 12 participants.

D. Evaluation

In order to evaluate the efficacy of the joint con-
text and speech model system, we deployed the trained
model on the robot and conducted autonomous construc-
tion trials with 11 participants (please refer to accompa-
nying video for select demonstrations, also available at
https://youtu.be/pSdN9NJg EI). As during data collection,
the robot supported the construction of three chairs by
retrieving parts based on speech commands issued by partic-
ipants. In addition to tasks A, B, and C we introduced three
corresponding permutations: A′, B′, C ′ (here referred to as
prime tasks). For the prime tasks, only the latter third of
the instructions were permuted allowing for the performance
of the model to be evaluated in a divergent and unfamiliar
context. Participants were provided one of three sets of
instructions: AC ′C ′, BA′A′, or CB′B′. The prime tasks
were repeated by each participant in order to gauge how
effectively the system was able to learn from the previous
trial.

https://youtu.be/pSdN9NJg_EI


TABLE II
TEN UTTERANCES FROM THE RANDOMLY CHOSEN ‘FOOT 4’ OBJECT, AS

DETECTED BY THE SPEECH-TO-TEXT SYSTEM [33].

Utterance

1 “Green Leaf shaped green leaf shaped object on your right arm with
black pants”

2 “I had the last 3 months and then we’re one black lines at the top
and wants to bottom”

3 “the leaf shaped object green colored with One Bank on black bun
on top and one on the bottom”

4 “thank you can I have another green part that has one black line on
the top one black line on the bottom on your right arm”

5 “Baxter can you hand me”
6 “I need the greens Green Park and it has a hole in between the black

to Circus”
7 “I want the green part with one black stripe at the top and one black

stripe at the bottom”
8 “vodka the Green Bay’s peace”
9 “give me the green part with black line on the top and the bottom”
10 “underneath the rectangular blue line on the top and in the middle

Back Square private line”

In accordance with the data collection phase, participants
constructed the chair in the order specified by the instructions
sets. In the event that an incorrect piece was retrieved by the
robot, the participants were instructed to press a red button
on the robot’s end effector resulting in the robot returning
the piece to its original location. This was repeated until
the robot retrieved the correct piece. The performance of the
system was evaluated based on the number of occurrences
of such button presses during each trial.

IV. RESULTS

A. Collected data

In this experiment we initially trained a decision process
as a classifier on the 20 actions from a little more than 600
samples collected from 12 participants over 3 assemblies
per participant. Additionally, further training was acquired
online during experimental sessions, with learning persisting
across the three trials. Thus we demonstrate the feasibility
of training a supportive robot on a limited amount of data,
from a relatively unconstrained scenario, and without any
assumption on the language used by the participants, outside
of the availability of a speech to text system. This setting
contrasts sharply with the large amount of data required
by typical NLP systems. In particular it brings training to
a range feasible for real-world HRC and robotics scenario,
where data collection is both hard to constrain and costly.

Table II shows a selection of utterances for one action,
chosen randomly from our training set. The table displays
the variability of the utterances used to request the same
object, as well as the transcription errors from the speech to
text system. In particular, several utterances are not correctly
transcribed, some are truncated, and some are not associated
with the correct object. They illustrate the difficulty of
acquiring clean training data from real world scenario, even
when using a teleoperated robot.
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Fig. 4. Errors per trial across participants. Here an error is an incorrect
action taken by the robot. A paired t-test revealed a significant decrease in
error rate across trials 2 and 3 (p < 0.001). This suggests that the system
is capable of effectively learning new tasks from limited data.
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Fig. 5. Errors across instruction steps. The dashed black line indicates the
step at which the instructions diverge from those used in the training set
for the trails denoted by the blue and green lines.

B. User interaction

Trial 1 utilized one of the three instructions from the
training phase (either A, B, or C). Trials 2 and 3 had the
participants repeating one of the novel prime permutations
(either A′, B′, or C ′). The repetition of prime tasks allowed
us to evaluate how rapidly and effectively the system was
able to learn new tasks.

Fig. 4 presents the classification median error rate of the
algorithm for the utterances captured from 11 participants
across the three trials. No errors were observed in the familiar
tasks trial, suggesting that the system robustly learned the
structure of the three tasks comprising the trial. While the
model performed noticeably worse on the unfamiliar task
trial, a paired t-test revealed it’s acquired familiarity with
the task boosted performance significantly (p < 0.001) on
the second attempt. In Fig. 5 the effects of learning are
made more apparent. Across the unfamiliar tasks trial and the
repetition trial, performance is worst at instruction step 14—
the step at which the prime instructions diverge from their
corresponding originals. However, on the second attempt,
there are comparatively fewer errors at step 14, and indeed
no errors for subsequent steps, supporting the models ability
to rapidly acquire task structures from limited data.

In addition, we compared the error rate of the speech,
context, and joint speech and context models in simulation
using the data collected from the experimental trials. In order



TABLE III
AVERAGE ERROR RATE (IN PARENTHESIS, STANDARD DEVIATION) PER

EXPERIMENTAL TRIAL FOR EACH MODEL.

Speech Context Speech & Context

Familiar 10.1 (2.16) 0.6 (0.48) 0.0 (0.0)
Unfamiliar 10.8 (2.60) 6.7 (0.64) 3.6 (1.11)
Repeated unfamiliar 10.3 (2.60) 1.7 (0.64) 0.9 (0.53)

se
at

ch
ai

r
b
ac

k

le
g

1

le
g

2

le
g

3

le
g

4

le
g

5

le
g

6

le
g

7

fo
ot

1

fo
ot

2

fo
ot

3

fo
ot

4

fr
on

t
1

fr
on

t
2

fr
on

t
3

fr
on

t
4

to
p

1

to
p

2

b
ac

k
1

b
ac

k
2

sc
re

w
d
ri

ve
r

1

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
ab

il
it

y

*

*
*

“hey Baxter can you bring me the pole with the red stripe green stripe
and blue stripe evenly spaced”

Speech

Context

Speech & Context

(a) Ambiguous speech.

se
at

ch
ai

r
b
ac

k

le
g

1

le
g

2

le
g

3

le
g

4

le
g

5

le
g

6

le
g

7

fo
ot

1

fo
ot

2

fo
ot

3

fo
ot

4

fr
on

t
1

fr
on

t
2

fr
on

t
3

fr
on

t
4

to
p

1

to
p

2

b
ac

k
1

b
ac

k
2

sc
re

w
d
ri

ve
r

1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ro

b
ab

il
it

y

*

*

*

“okay Baxter could I have the wooden rectangle with a red green and
blue paint near the bottom”

Speech

Context

Speech & Context

(b) Ambiguous context.

Fig. 6. Model predictions from actual participant commands. The quoted
text above each figure denotes the command being classified by the three
models. The colored bars denote each model’s probability distribution over
all possible actions. Asterisks above select bars denote the action selected
by the corresponding model.

to compare the three models on the data where only one
was running, the error rate is the number of robot errors
on first attempt. In other words, repetition of the command
by the participant after an incorrect action from the robot
are discarded. As reported in Table III, the joint speech
and context model produced the fewest errors on all trials,
supporting efficacy of this approach.

V. DISCUSSION

We present a flexible system capable of building in-
cremental models of speech and context information for
producing desired behaviors. In addition, we present results
from a baseline HRC experiment that had a participant and
an autonomous robot complete an assembly task. For the
experimental trials utilizing instructions from the training
set, our model correctly classified all of the participants’
commands. This is notable given the relatively small number
of examples in the training set (approximately 12 of each of
the three instruction sets). While performance decreased on

unfamiliar tasks, the system’s performance increased signif-
icantly after only a single exposure. This suggests that the
system develops approximate yet adaptable representations
of tasks which can be generated quickly, but also deviated
from should it be required.

The strength of our system lies in its integration of the
outputs of two distinct models, speech and context, for action
selection. Figure 6 depicts instructive example model outputs
from actual participant commands. When the speech model
weights multiple actions equally (Fig. 6a), the context model
can break the tie. This is also true in the converse case
(Fig. 6b); when multiple actions are weighed ambiguously
by the context model, the speech model can induce the
correct classification of the command. This also holds when
the system is in an unfamiliar context, as is the case when
performing an unfamiliar task, and thus must solely rely
on the speech model. Having the models compensate for
each others’ weaknesses, enables to effectively bootstrap one
model from the others’ learning of the task. Not only does
this boost the overall performance on subsequent tasks, but it
enables the robot to be trained online as it provides support
for its collaborators.

A current weakness of the system is its inability to weight
each of the models’ predictions by its confidence in said pre-
dictions. In some instances this behavior may be desired, for
example when the speech model strongly favors one action,
but the context model favors another. If the speech command
in question was very similar to commands the model had
been trained on, then we may want the speech model to
override the context model, irrespective of the strength of the
context models prediction. This could potentially allow the
system to more readily explore unfamiliar contexts, and thus
learn new tasks more rapidly. A typical case of this situation,
of great interest for future work, is the one of a sentence
containing a new word, to be contrasted with the situation
of a irrelevant utterance, or one containing a word incorrectly
transcribed. In particular, when facing an irrelevant utterance,
the system should probably rely on its contextual prediction,
while when facing a new word, it might be on the other side
relevant to assume that the new word refers to an uncommon
action. This latter approach is implemented in pragmatics
models (e.g. [16], [20]); it is of great interest for future work
to contrast such models in concrete situations like these one.

A limitation of this model is that its effectiveness is
constrained to only tasks that are structured. Free-form tasks
or tasks that permit no consistent set of approaches to a
solution constrain the predictive power of the context model.
Additionally, for the purposes of this experiment, words that
did not appear in the initial training set were ignored by the
speech model and were not learned online. This, however,
is not a theoretical limitation of the system but rather a
concession made during the implementation of the speech
model for simplicity.

VI. CONCLUSIONS

In this paper we presented a flexible system capable of
incrementally deriving a model of a robot’s desired behavior



from contextual and speech information. In experimental tri-
als with human participants, our system demonstrated perfect
classification rates of commands for task with which it was
familiar, and significant performance increases on unfamiliar
tasks after one-shot exposures. The minimal training required
for robust performance, paired with the simplicity of the
system suggests that the system is well suited for HRC, a
domain where large quantities of data are difficult to obtain.

Future work will focus on extending this system by dy-
namically weighting model predictions based on prediction
confidence. This should allow the system to mitigate the
effects of contextual over-fitting, and allow the system to
acquire representations of new tasks more readily.
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P. Abbeel, and T. Darrell, “Grounding spatial relations for human-robot
interaction,” in Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ
International Conference on. IEEE, 2013, pp. 1640–1647.

[23] T. Kollar, S. Tellex, D. Roy, and N. Roy, “Toward understanding
natural language directions,” in Human-Robot Interaction (HRI), 5th
ACM/IEEE International Conference on. IEEE, 2010, pp. 259–266.

[24] S. N. Blisard and M. Skubic, “Modeling spatial referencing language
for human-robot interaction,” in ROMAN 2005. IEEE International
Workshop on Robot and Human Interactive Communication, 2005.
IEEE.

[25] S. Hemachandra, M. R. Walter, S. Tellex, and S. Teller, “Learning
spatial-semantic representations from natural language descriptions
and scene classifications,” in Robotics and Automation (ICRA), 2014
IEEE International Conference on. IEEE, 2014, pp. 2623–2630.

[26] S. Tellex, T. Kollar, S. Dickerson, M. Walter, A. Banerjee, S. Teller,
and N. Roy, “Understanding natural language commands for robotic
navigation and mobile manipulation,” in AAAI Conference on Artificial
Intelligence. AAAI Publications, 2011.

[27] T. M. Howard, S. Tellex, and N. Roy, “A natural language planner in-
terface for mobile manipulators,” in Robotics and Automation (ICRA),
2014 IEEE International Conference on. IEEE, 2014, pp. 6652–6659.

[28] R. Cantrell, J. Benton, K. Talamadupula, S. Kambhampati, P. Scher-
merhorn, and M. Scheutz, “Tell me when and why to do it! Run-
time planner model updates via natural language instruction,” in
Human-Robot Interaction (HRI), 2012 7th ACM/IEEE International
Conference on. IEEE, 2012, pp. 471–478.

[29] J. MacGlashan, M. Babes-Vroman, M. desJardins, M. Littman,
S. Muresan, S. Squire, S. Tellex, D. Arumugam, and L. Yang,
“Grounding English Commands to Reward Functions,” in Proceedings
of Robotics: Science and Systems, Rome, Italy, July 2015.

[30] S. Zeylikman, S. Widder, A. Roncone, O. Mangin, and B. Scassellati,
“The HRC model set for human-robot collaboration research,” in
Intelligent Robots and Systems (IROS), 2018 IEEE/RSJ International
Conference on. IEEE, Oct 2018.

[31] O. Mangin, A. Roncone, and B. Scassellati, “How to be Helpful?
Implementing Supportive Behaviors for Human-Robot Collaboration,”
arXiv preprint arXiv:1710.11194, 2017.
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